Closed-Loop Measurements of Iso-Response Stimuli Reveal Dynamic Nonlinear Stimulus Integration in the Retina
نویسندگان
چکیده
Neurons often integrate information from multiple parallel signaling streams. How a neuron combines these inputs largely determines its computational role in signal processing. Experimental assessment of neuronal signal integration, however, is often confounded by cell-intrinsic nonlinear processes that arise after signal integration has taken place. To overcome this problem and determine how ganglion cells in the salamander retina integrate visual contrast over space, we used automated online analysis of recorded spike trains and closed-loop control of the visual stimuli to identify different stimulus patterns that give the same neuronal response. These iso-response stimuli revealed a threshold-quadratic transformation as a fundamental nonlinearity within the receptive field center. Moreover, for a subset of ganglion cells, the method revealed an additional dynamic nonlinearity that renders these cells particularly sensitive to spatially homogeneous stimuli. This function is shown to arise from a local inhibition-mediated dynamic gain control mechanism.
منابع مشابه
Nonlinear spatial integration in the receptive field surround of retinal ganglion cells.
Throughout different sensory systems, individual neurons integrate incoming signals over their receptive fields. The characteristics of this signal integration are crucial determinants for the neurons' functions. For ganglion cells in the vertebrate retina, receptive fields are characterized by the well-known center-surround structure and, although several studies have addressed spatial integra...
متن کاملThe iso-response method: measuring neuronal stimulus integration with closed-loop experiments
Throughout the nervous system, neurons integrate high-dimensional input streams and transform them into an output of their own. This integration of incoming signals involves filtering processes and complex non-linear operations. The shapes of these filters and non-linearities determine the computational features of single neurons and their functional roles within larger networks. A detailed cha...
متن کاملNONLINEAR CONTROL OF HEAT TRANSFER DYNAMIC USING HOMOTOPY PERTURBATION METHOD (HPM)
Nonlinear problems are more challenging and almost complex to be solved. A recently developed Homotopy Perturbation Method (HPM) is introduced. This method is used to represent the system as a less complicated (almost linear) model. To verify the effectiveness, HPM based model is compared with the nonlinear dynamic in both open and closed loop PI controlled. The error indices are approximation ...
متن کاملClosed-Loop Estimation of Retinal Network Sensitivity by Local Empirical Linearization
Understanding how sensory systems process information depends crucially on identifying which features of the stimulus drive the response of sensory neurons, and which ones leave their response invariant. This task is made difficult by the many nonlinearities that shape sensory processing. Here, we present a novel perturbative approach to understand information processing by sensory neurons, whe...
متن کاملDefinition of General Operator Space and The s-gap Metric for Measuring Robust Stability of Control Systems with Nonlinear Dynamics
In the recent decades, metrics have been introduced as mathematical tools to determine the robust stability of the closed loop control systems. However, the metrics drawback is their limited applications in the closed loop control systems with nonlinear dynamics. As a solution in the literature, applying the metric theories to the linearized models is suggested. In this paper, we show that usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 73 شماره
صفحات -
تاریخ انتشار 2012